EXEMPLES D'ÉVALUATION METTANT EN ŒUVRE LES T.I.C. EXEMPLE 1 : LA SÉCURITÉ ROUTIÈRE

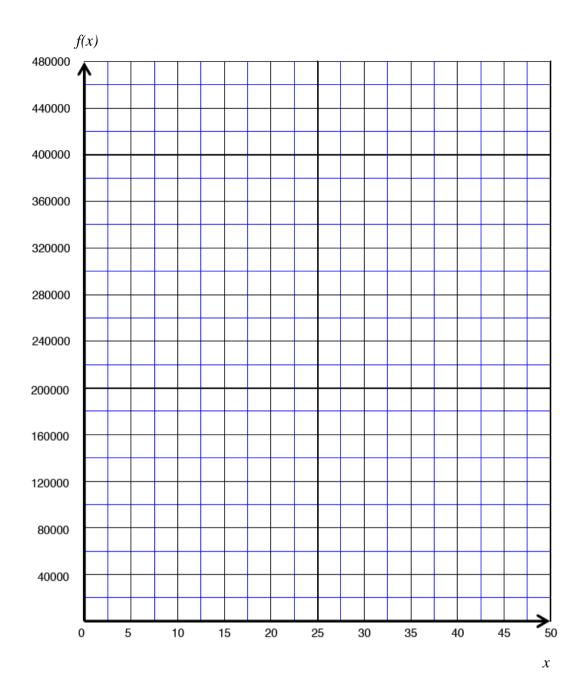
Niveau: seconde professionnelle.

 $Modules: information\ chiffr\'ee-proportionnalit\'e,\ notion\ de\ fonction,\ utilisation\ des\ fonctions\ de$

référence.

Thématique : utiliser un véhicule (prévention, santé et sécurité).

Énoncé


L'objectif de cette évaluation est de vérifier les informations fournies par un document publié par la sécurité routière : en voiture, un choc à 50 km/h correspond à faire chuter du 3ème étage cette voiture.

Partie A: Calcul de l'énergie développée lors de la chute verticale d'un objet.

L'énergie E_p , en joules, développée lors de la chute verticale d'un objet de masse m, d'une hauteur h, exprimée en m, se calcule à l'aide de la relation suivante :

$$E_p = m \times g \times h$$
 avec $g = 10 \text{ N/kg}$.

- 1. Calculer l'énergie E_p développée lors d'une chute d'une hauteur de 3,5 m d'un véhicule de masse 1 200 kg.
- 2. La détermination de l'énergie E_p développée lors de la chute d'un véhicule d'une masse de 1 200 kg en fonction de la hauteur de chute x, exprimée en m, peut être modélisée à l'aide de la fonction f définie par $f: x \alpha 12 000 x$.
 - Représenter graphiquement la fonction f définie sur [0;40] dans le plan rapporté au repère cidessous.

- 3. Les grandeurs E_p et h sont-elles proportionnelles ? Justifier la réponse.
- 4. En supposant qu'un immeuble de trois étages a une hauteur de 10 m, déterminer graphiquement l'énergie E_p développée lors d'une chute verticale d'un véhicule de 1~200~kg de la hauteur de cet immeuble.
- 5. Calculer la valeur exacte de cette énergie E_p développée lors d'une chute verticale d'un véhicule de 1 200 kg de la hauteur de cet immeuble de 3 étages.

Partie B : Calcul de l'énergie de mouvement emmagasinée lors du déplacement d'un véhicule

L'énergie Ec, en joules, emmagasinée par un véhicule de masse m, exprimée en kg, lors d'un déplacement à la vitesse v, exprimée en m/s, se calcule à l'aide de la relation $E_c = \frac{1}{2} m \times v^2$.

1. Calculer l'énergie E_c emmagasinée lorsqu'un véhicule de 1 200 kg se déplace à la vitesse de 70 km/h.

Remarque : pour l'ensemble de l'exercice, on admet que 1 m/s = 3.6 km/h

2. La détermination de l'énergie de mouvement E_o en joules, emmagasinée lors du déplacement d'un véhicule d'une masse de 1 200 kg en fonction de la vitesse x, en m/s, peut être modélisée à l'aide de la fonction g définie par $g:x \alpha = 600 \ x^2$

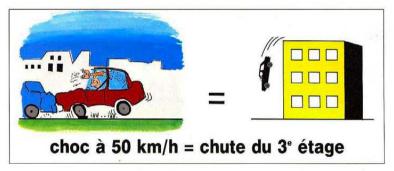
À l'aide d'une calculatrice graphique :

2.1 Compléter le tableau de valeurs ci-dessous :

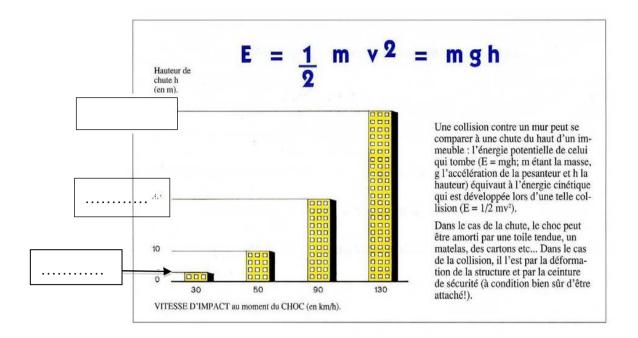
X	0	18	24	40
g(x)			•••••	

2.2 Représenter graphiquement la fonction g sur l'intervalle [0; 40].

Appel n°1 : Appeler le professeur afin qu'il vérifie le tableau de valeurs, le choix des paramètres de « window » et la courbe obtenue sur l'écran de la calculatrice.


2.3 Déterminer graphiquement la valeur de x appartenant à [0; 40] pour laquelle f(x) = 120000.

Appel n°2 : Appeler le professeur afin qu'il vérifie le résultat obtenu sur l'écran de la calculatrice.


Partie C: Conclusion

1. En utilisant les résultats obtenus dans les parties A et B, commenter le dessin ci-dessous :

2. Complément pour un travail personnel

En utilisant le graphique de la partie A et la représentation graphique de la partie B, compléter le schéma de la sécurité routière suivant :

Grille d'évaluation

Que	estions	Capacités		Barème	Note
	1 et 2	Représenter graphiquement une fonction linéaire		2	
Partie A	3	Reconnaître deux suites de nombres proportionnelles		1	
Par	4 et 5	Exploiter une représentation graphique d'une fonction sur un intervalle		1	
	1, 2.1 et 2.2	Appel N°1	Utiliser une calculatrice pour obtenir un tableau de valeurs d'une fonction donnée	3	
Partie B			Représenter graphiquement une fonction de la forme $x \alpha k x^2$		
P_{a}	2.3	Appel N°2	Résoudre graphiquement une équation de la forme $f(x) = c$ où c est un nombre réel donné	2	
Par	rtie C	Conclusion		1	
Note sur 10					