
1. Fonction carrée : $f(x) = x^2$

Х	-∞	0	+∞
f(x)			

2. Fonction cube : $f(x) = x^3$

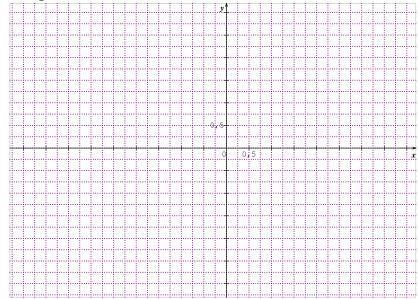


Tableau de variation :

X	-∞ 0	+∞
f(x)		
J(x)		

3. Fonction inverse: $f(x) = \frac{1}{x}$

Cette fonction est **définie pour tout nombre réel** x

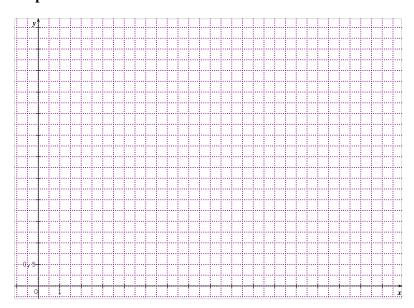

Sa représentation graphique est unesymétrique par rapport

Tableau de variation :

\boldsymbol{x}	-∞	0	+∞
f(x)			
$J(\lambda)$			

4. Fonction racine carrée : $f(x) = \sqrt{x}$

Cette fonction est **définie pour tout nombre réel** x

Tableau de variation:

х	-∞
f(x)	

La fonction kf est une fonction définie sur un intervalle I par $(kf)(x) = \dots$ Elle a le même sens de variation que f siet a un sens de variation contraire à celui de f si
La représentation graphique C_{kf} de la fonction kf peut être obtenue point par point à partir de la courbes C_f représentative de la fonction f : pour une abscisse x_i donnée, l'ordonnée du point de la courbe C_{kf} s'obtient enl'ordonnées $f(x_i)$ par
6. Fonctions de la forme $f+g$
La somme $f + g$ des fonctions f et g est la fonction définie sur un intervalle I par : $(f + g)(x) = \dots$
La représentation graphique C_{f+g} de la fonction $f+g$ peut être obtenue point par point à partir des courbes C_f et C_g représentatives des fonctions f et g : pour une abscisse x_i donnée, l'ordonnée du point de la courbe C_{f+g} s'obtient en

5. Fonctions de la forme kf (k étant un nombre réel) :