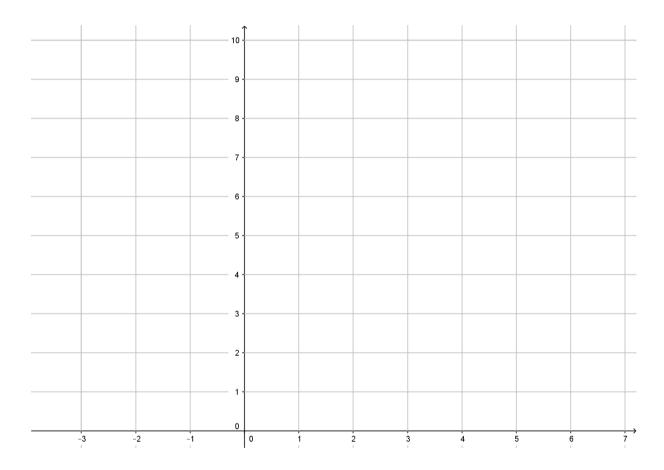
Fonctions exponentielles

> Approche


Soit la suite géométrique de 1^{er} terme $U_0 = 1$ et de raison q strictement positive et différente de 1. Compléter le tableau :

U_0	U_1	U_2	<i>U</i> ₃	U_4	•••••	U_n
1		•••••	•••••	•••••	•••••	•••••

Cette suite peut être représentée graphiquement par la fonction $f: x \to q^x$ ($f(x) = q^x$) appelée fonction exponentielle avec q > 0 et $q \ne 1$

> Représentations graphiques

Représenter graphiquement les fonctions exponentielles $f: x \to q^x$ pour q = 10; q = 2 et q = 0,5:

х	-3	-2,5	-2	-1,5	-1	-0,5	0	0,5	1	1,5	2	2,5	3
$f(x) = 10^x$													
$g(x)=2^x$							1						
$h(x) = 0.5^x$													

Fonctions exponentielles

> Tableaux de variation :

X	-3	0	3
$f_1: x \to 10^x$			

X	-3	0	3
$f_2: x \to 2^x$			

X	-3	0	3
$f_3: x \to 0,5^x$			
			•••••

Propriétés opératoires

Soit q un réel strictement positif et différent de 1. Pour tout réel x et y on a :

$$q^x$$
 0

$$q^{-x} = \frac{1}{1}$$

$$q^{-x} = \frac{1}{\dots q^x \times q^y} = \dots q^x \times q^y = \dots$$

$$\frac{q^x}{q^y} = \dots$$

$$(q^x)^y = \dots$$

$$(q^x)^y = \dots q_1^x \times q_2^x = (\dots \dots)^m$$