Conversions de mesures

1. Le système international S.I.

Les principales :

Le mètre	(m)	Unité de longueur
Le kilogramme	(kg)	Unité de masse
La seconde	(0)	Unité de temps
L'Ampère	(A)	Unité d'intensité électrique
Le Kelvin	(%)	Unité de température
La mole	(mol)	Unité de quantité de matière
La candéla	(cd)	Unité d'intensité lumineuse

D'autres unités sont données en fonction de celles-là. On les appelle les unités dérivées. Certaines ont leur nom propre, les autres ont des noms composés.

2. Multiples et sous-multiples.

Les multiples et sous-multiples des unités S.I. qui ont leur nom propre ont leur nom formé du nom de l'unité principale précédé d'un préfixe codifié lié à l'ordre de grandeur du multiple ou du sous-multiple.

Exemples: dm: décimètre, dam:, cL:...,

10 ¹	déca	da	10 ⁻¹	déci	d
10^{2}	hecto	h	10 ⁻²	centi	c
10^{3}	kilo	K	10^{-3}	milli	m
10^{6}	Méga	M	10 ⁻⁶	micro	μ
109	Giga	G	10 ⁻⁹	nano	n
10^{12}	Téra	T	10 ⁻¹²	pico	p
10^{15}	Péta	P	10 ⁻¹⁵	femto	f
10^{18}	Exa	Е	10^{-18}	atto	a
10^{21}	Zetta	Z	10 ⁻²¹	zepto	Z
10^{24}	Yotta	Y	10 ⁻²⁴	yodo	у

3. **Longueurs**

Exemples:

1 mm =	dam
7 km =	dam
8, 2 mm =	m

km	hm	dam	m	dm	cm	mm

>	km	hm	dam	m	dm	cm	mm		μm
km	1	10							
hm		1	10						
dam									
m									
dm									
cm									
mm									
μm									

4. Superficies, aires.

Les unités agraires: (pour les terrains)

 $Are = 1 a = 1 dam^2$

Hectare = $1 \text{ ha} = \dots \text{ a} = \dots \text{ hm}^2$

 $(1 \text{ hectare} = 100m \times 100m)$

kr	n^2	hr	n^2	da	m^2	m	\mathbf{i}^2	dr	n^2	cr	n^2	mı	n^2

			ha.	<u>a</u>				
	1	kw ₅	hmt	dam	m*	dm²	cm²	mm²
	Km²	1	ئەد	ا ملا	اً مُل	Jo*	%'٥	ا"ملا
hа	hm²	ا مار	4	101	104	Job	Jo ⁸	Jo'°
а	dami	ا مار	Jo"	١	lo*	lo'	'هار	Jo*
	m²	Job	Jo"	اً مار	1	do	ئەل	ا 'ما
	dm²	المح	ئەل	15	402	1	ئەل	امل
	cmt	ر ار	10.8	lo.	Jo"	'مار	1	10,
	mm3					10'		1

5. Volumes

 $1m^3 = 1m \times 1m \times 1m$

 $1m^3 = 10dm \times 10dm \times 10dm$

 $1m^3 = 10^3 dm^3 = \dots dm^3$

Litre: $1 L = 1 dm^3$

Décalitre: $1 daL = \dots L$ Déciltre: $1 dL = \dots L$

Hectolitre: $1 \text{ hL} = \dots \text{ L}$ Centilitre: $1 \text{ cL} = \dots \text{ L}$ Millilitre : $1 \text{ mL} = \dots L$

Exemples:

 $10^{3} L = \dots L = \dots m^{3}$ $1 \text{ mL} = 1 \text{cm}^{3} = 1 \text{cc}$

m³		Dm ³		cm ³			mm ³			
		hL	daL	L	dL	cL	mL			

 $59 \text{ mm}^3 = \dots \text{ cm}^3$

 $47 \text{ m}^3 = \dots \text{L}$

 $32 dL = \dots dm^3$

 $18 \text{ mL} = \dots \text{mm}^3$

		T. L	-	1
~	m³	9~,	cav ₃	mm³
W ₃	7	Jo3	ر. اهار	Jo ³
qw,	الأهار	1	Jo°	100
cw ₃	Jo⁻°	10.3	1	Ло³
uw ₃	No.s	ئەل	10.3	1

6. <u>Le temps</u>

Unité principale : la seconde 1 s
Sous-multiples: 1 ds = s 1 cs = s 1ms =s
1 min = 60 s
$$\left(1s = \frac{\dots}{\dots} \min\right)$$

1 h = 60 min $\left(1 \min = \frac{\dots}{\dots} h\right)$
1 h = 3 600 s $\left(1s = \frac{\dots}{\dots} h\right)$
1 jour = h = min = s

Les conversions des unités composées doivent être maîtrisées pour les calculs de masses volumiques, pression, vitesse, débit, ...

Les unités utilisées professionnellement peuvent être différentes des unités du Système International (unités S.I.).

L'utilisation des puissances négatives permet de faciliter les calculs.

7. Conversions composées:

$$7800 \text{ kgm}^{-3} = ... = ... = ... \text{gcm}^{-3}$$
 $2.5 \text{ daNcm}^{-2} = ... = ... = ... N m^{-2}$
 $130 \text{ kmh}^{-1} = ... = ... = ... = ... ms^{-1}$
 $15 \text{ ms}^{-1} = ... = ... = ... kmh^{-1}$
 $2,7 \text{ gcm}^{-3} = ... = ... = ... kgm^{-3}$
 $450 \text{ Lh}^{-1} = ... = ... = ... ms^{-1}$